Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 683
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2339946, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38578304

RESUMO

Streptococcus suis is a significant and emerging zoonotic pathogen. ST1 and ST7 strains are the primary agents responsible for S. suis human infections in China, including the Guangxi Zhuang Autonomous Region (GX). To enhance our understanding of S. suis ST1 population characteristics, we conducted an investigation into the phylogenetic structure, genomic features, and virulence levels of 73 S. suis ST1 human strains from GX between 2005 and 2020. The ST1 GX strains were categorized into three lineages in phylogenetic analysis. Sub-lineage 3-1a exhibited a closer phylogenetic relationship with the ST7 epidemic strain SC84. The strains from lineage 3 predominantly harboured 89K-like pathogenicity islands (PAIs) which were categorized into four clades based on sequence alignment. The acquirement of 89K-like PAIs increased the antibiotic resistance and pathogenicity of corresponding transconjugants. We observed significant diversity in virulence levels among the 37 representative ST1 GX strains, that were classified as follows: epidemic (E)/highly virulent (HV) (32.4%, 12/37), virulent plus (V+) (29.7%, 11/37), virulent (V) (18.9%, 7/37), and lowly virulent (LV) (18.9%, 7/37) strains based on survival curves and mortality rates at different time points in C57BL/6 mice following infection. The E/HV strains were characterized by the overproduction of tumour necrosis factor (TNF)-α in serum and promptly established infection at the early phase of infection. Our research offers novel insights into the population structure, evolution, genomic features, and pathogenicity of ST1 strains. Our data also indicates the importance of establishing a scheme for characterizing and subtyping the virulence levels of S. suis strains.


Assuntos
Genoma Bacteriano , Ilhas Genômicas , Filogenia , Infecções Estreptocócicas , Streptococcus suis , Streptococcus suis/genética , Streptococcus suis/patogenicidade , Streptococcus suis/classificação , Streptococcus suis/isolamento & purificação , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/epidemiologia , China/epidemiologia , Humanos , Virulência , Animais , Camundongos , Feminino , Genômica , Fatores de Virulência/genética
2.
Front Cell Infect Microbiol ; 14: 1356628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456079

RESUMO

Streptococcus suis is an emerging zoonotic pathogen that can cause invasive disease commonly associated with meningitis in pigs and humans. To cause meningitis, S. suis must cross the blood-brain barrier (BBB) comprising blood vessels that vascularize the central nervous system (CNS). The BBB is highly selective due to interactions with other cell types in the brain and the composition of the extracellular matrix (ECM). Purified streptococcal surface enolase, an essential enzyme participating in glycolysis, can bind human plasminogen (Plg) and plasmin (Pln). Plg has been proposed to increase bacterial traversal across the BBB via conversion to Pln, a protease which cleaves host proteins in the ECM and monocyte chemoattractant protein 1 (MCP1) to disrupt tight junctions. The essentiality of enolase has made it challenging to unequivocally demonstrate its role in binding Plg/Pln on the bacterial surface and confirm its predicted role in facilitating translocation of the BBB. Here, we report on the CRISPR/Cas9 engineering of S. suis enolase mutants eno261, eno252/253/255, eno252/261, and eno434/435 possessing amino acid substitutions at in silico predicted binding sites for Plg. As expected, amino acid substitutions in the predicted Plg binding sites reduced Plg and Pln binding to S. suis but did not affect bacterial growth in vitro compared to the wild-type strain. The binding of Plg to wild-type S. suis enhanced translocation across the human cerebral microvascular endothelial cell line hCMEC/D3 but not for the eno mutant strains tested. To our knowledge, this is the first study where predicted Plg-binding sites of enolase have been mutated to show altered Plg and Pln binding to the surface of S. suis and attenuation of translocation across an endothelial cell monolayer in vitro.


Assuntos
Meningite , Streptococcus suis , Animais , Humanos , Suínos , Plasminogênio/metabolismo , Barreira Hematoencefálica , Streptococcus suis/genética , Streptococcus suis/metabolismo , Translocação Bacteriana , Fibrinolisina/metabolismo , Sítios de Ligação , Fosfopiruvato Hidratase/química
3.
Vet Res ; 55(1): 14, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317258

RESUMO

Streptococcus suis (S. suis) is an important porcine pathogen causing meningitis, arthritis, and septicemia. Serotypes 2 and 14 are the most common zoonotic ones worldwide, whereas serotypes 2, 9, and 7 are very important in pigs in Europe. To cause invasive infections S. suis needs to enter the bloodstream. Consequently, the immune response in blood represents an important line of defense and bacteremia plays a key role in the pathogenesis of invasive S. suis infections. We investigated the working hypothesis that S. suis strains of the same serotype but different clonal complex (CC) might exhibit substantial differences in the interaction with components of the immune system in porcine blood. The experimental design of this study includes comparative analysis of 8 virulent strains belonging to 4 serotypes with strains of the same serotype being genetically not closely related. Significant differences between two strains of the same serotype but different clonal complex were recorded in the flow cytometric analysis of association with different leukocytes for serotype 9 and 14. Our results demonstrate that the serotype 9 strain of CC94 shows significantly increased association with monocytes and survival in porcine blood of conventional piglets as well as a tendency towards decreased composition of C3 in plasma of these piglets in comparison to the serotype 9 strain of CC16. Correlation analysis of C3 deposition on the bacterial surface and survival in respective blood samples of 8-week-old piglets demonstrated a negative correlation indicating that C3 deposition is a crucial step to limit bacterial survival and proliferation of different S. suis pathotypes in the blood of these piglets. In summary, our results indicate that the capsule composition of a S. suis strain is not alone sufficient to determine association with leukocytes, activation of complement, induction of proinflammatory cytokines, oxidative burst, and bacterial survival in porcine blood. In this study, substantial differences in these host-pathogen interactions were observed between strains of the same serotype. Therefore, a more comprehensive characterization of the field isolates, including at least MLST analysis to determine the sequence type/clonal complex, is recommended.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Animais , Streptococcus suis/genética , Monócitos , Tipagem de Sequências Multilocus/veterinária , Sorogrupo , Granulócitos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia
4.
Future Microbiol ; 19: 107-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38305226

RESUMO

Background: Biofilm formation is considered to be one of reasons for difficulty in the prevention and control of Streptococcus suis. Aims: To explore the potential genes involved in the biofilm formation of S. suis. Methods: Transposon mutagenesis technology was used to screen biofilm-defective strains of S. suis, and the potential genes related to biofilm were identified. Results: A total of 19 genes were identified that were involved in bacterial metabolism, peptidoglycan-binding protein, cell wall synthesis, ABC transporters, and so on. Conclusion: This study constructed 979 transposon mutation libraries of S. suis. A total of 19 gene loci related to the formation of S. suis biofilm were identified, providing a reference for exploring the mechanism of S. suis biofilm formation in the future.


Streptococcus suis is an important pathogen (this is a microorganism that causes, or can cause, disease) that can be transmitted between animals and humans. The ability to form a protective community, called a biofilm, is one of the reasons why we can have difficulty in preventing and treating S. suis infection. The main purpose of this study was to screen potential genes that may determine biofilm formation in S. suis. The results revealed 19 genes that may affect the biofilm formation of S. suis.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Streptococcus suis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Mutagênese , Biofilmes , Infecções Estreptocócicas/microbiologia
5.
Microb Pathog ; 188: 106565, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309311

RESUMO

Streptococcus suis serotype 2 is a zoonotic agent that causes substantial economic losses to the swine industry and threatens human public health. Factors that contribute to its ability to cause disease are not yet fully understood. Glutamate dehydrogenase (GDH) is an enzyme found in living cells and plays vital roles in cellular metabolism. It has also been shown to affect pathogenic potential of certain bacteria. In this study, we constructed a S. suis serotype 2 GDH mutant (Δgdh) by insertional inactivation mediated by a homologous recombination event and confirmed loss of expression of GDH in the mutant by immunoblot and enzyme activity staining assays. Compared with the wild type (WT) strain, Δgdh displayed a different phenotype. It exhibited impaired growth in all conditions evaluated (solid and broth media, increased temperature, varying pH, and salinity) and formed cells of reduced size. Using a swine infection model, pigs inoculated with the WT strain exhibited fever, specific signs of disease, and lesions, and the strain could be re-isolated from the brain, lung, joint fluid, and blood samples collected from the infected pigs. Pigs inoculated with the Δgdh strain did not exhibit any clinical signs of disease nor histologic lesions, and the strain could not be re-isolated from any of the tissues nor body fluid sampled. The Δgdh also showed a decreased level of survival in pig blood. Taken together, these results suggest that the gdh is important in S. suis physiology and its ability to colonize, disseminate, and cause disease.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Animais , Humanos , Virulência , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Streptococcus suis/genética , Sorogrupo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Doenças dos Suínos/microbiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia
6.
Vet Res ; 55(1): 17, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321502

RESUMO

Streptococcus suis is a gram-positive bacterium that causes meningitis, septicemia, endocarditis, and other disorders in pigs and humans. We obtained 42 and 50 S. suis isolates from lesions of porcine endocarditis and palatine tonsils, respectively, of clinically healthy pigs in Japan; we then determined their sequence types (STs) by multilocus sequence typing (MLST), cps genotypes, serotypes, and presence of classical major virulence-associated marker genes (mrp, epf, and sly). The 42 isolates from endocarditis lesions were assigned to a limited number of STs and clonal complexes (CCs). On the other hand, the 50 isolates from tonsils were diverse in these traits and seemingly in the degree of virulence, suggesting that tonsils can accommodate a variety of S. suis isolates. The goeBURST full algorithm using tonsil isolates obtained in this study and those retrieved from the database showed that major CCs as well as many other clusters were composed of isolates originating from different countries, and some of the STs were very similar to each other despite the difference in country of origin. These findings indicate that S. suis with not only different but also similar mutations in the genome have survived in tonsils independently across different geographical locations. Therefore, unlike the lesions of endocarditis, the tonsils of pigs seemingly accommodate various S. suis lineages. The present study suggests that S. suis acquired its diversity by natural mutations during colonization and persistence in the tonsils of pigs.


Assuntos
Endocardite , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Humanos , Suínos , Animais , Tipagem de Sequências Multilocus/veterinária , Tonsila Palatina/microbiologia , Streptococcus suis/genética , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia , Endocardite/veterinária
7.
Emerg Infect Dis ; 30(3): 616-619, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407167

RESUMO

In Jeju Island, South Korea, a patient who consumed raw pig products had subdural empyema, which led to meningitis, sepsis, and status epilepticus. We identified Streptococcus suis from blood and the subdural empyema. This case illustrates the importance of considering dietary habits in similar clinical assessments to prevent misdiagnosis.


Assuntos
Empiema Subdural , Sepse , Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Empiema Subdural/diagnóstico , Streptococcus suis/genética , República da Coreia , Comportamento Alimentar , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/tratamento farmacológico
8.
Emerg Infect Dis ; 30(3): 413-422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407169

RESUMO

Streptococcus suis, a zoonotic bacterial pathogen circulated through swine, can cause severe infections in humans. Because human S. suis infections are not notifiable in most countries, incidence is underestimated. We aimed to increase insight into the molecular epidemiology of human S. suis infections in Europe. To procure data, we surveyed 7 reference laboratories and performed a systematic review of the scientific literature. We identified 236 cases of human S. suis infection from those sources and an additional 87 by scanning gray literature. We performed whole-genome sequencing to type 46 zoonotic S. suis isolates and combined them with 28 publicly available genomes in a core-genome phylogeny. Clonal complex (CC) 1 isolates accounted for 87% of typed human infections; CC20, CC25, CC87, and CC94 also caused infections. Emergence of diverse zoonotic clades and notable severity of illness in humans support classifying S. suis infection as a notifiable condition.


Assuntos
Streptococcus suis , Humanos , Animais , Suínos , Epidemiologia Molecular , Streptococcus suis/genética , Europa (Continente)/epidemiologia , Filogenia , Sequenciamento Completo do Genoma
9.
Microbiol Spectr ; 12(2): e0280323, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230928

RESUMO

Streptococcus suis (S. suis) has been increasingly recognized as a porcine zoonotic pathogen that threatens the health of both pigs and humans. Multidrug-resistant Streptococcus suis is becoming increasingly prevalent, and novel strategies to treat bacterial infections caused by these organisms are desperately needed. In the present study, an untargeted metabolomics analysis showed that the significant decrease in methionine content and the methionine biosynthetic pathway were significantly affected by the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis in drug-resistant S. suis. The addition of L-methionine restored the bactericidal activity of macrolides, doxycycline, and ciprofloxacin on S. suis in vivo and in vitro. Further studies showed that the exogenous addition of methionine affects methionine metabolism by reducing S-adenosylmethionine synthetase activity and the contents of S-adenosylmethionine, S-adenosyl homocysteine, and S-ribose homocysteine. Methionine can decrease the total methylation level and methylesterase activity in multidrug resistant S. suis. The drug transport proteins and efflux pump genes were significantly downregulated in S. suis by exogenous L-methionine. Moreover, the exogenous addition of methionine can reduce the survival of S. suis by affecting oxidative stress and metal starvation in bacteria. Thus, L-methionine may influence the development of resistance in S. suis through methyl metabolism and metal starvation. This study provides a new perspective on the mitigation of drug resistance in S. suis.IMPORTANCEBacterial antibiotic resistance has become a severe threat to human and animal health. Increasing the efficacy of existing antibiotics is a promising strategy against antibiotic resistance. Here, we report that L-methionine enhances the efficacy of macrolides, doxycycline, and ciprofloxacin antibiotics in killing Streptococcus suis, including multidrug-resistant pathogens. We investigated the mechanism of action of exogenous methionine supplementation in restoring macrolides in Streptococcus suis and the role of the methionine cycle pathway on methylation levels, efflux pump genes, oxidative stress, and metal starvation in Streptococcus suis. It provides a theoretical basis for the rational use of macrolides in clinical practice and also identifies a possible target for restoring drug resistance in Streptococcus suis.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Streptococcus suis/genética , Macrolídeos/uso terapêutico , Metionina/metabolismo , Metionina/uso terapêutico , Doxiciclina/uso terapêutico , Infecções Estreptocócicas/microbiologia , Antibacterianos/uso terapêutico , Ciprofloxacina , Homocisteína/metabolismo , Homocisteína/uso terapêutico
10.
Vet Res ; 55(1): 11, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268053

RESUMO

Streptococcus suis is a zoonotic pathogen that causes a major health problem in the pig production industry worldwide. Spain is one of the largest pig producers in the world. This work aimed to investigate the genetic and phenotypic features of invasive S. suis isolates recovered in Spain. A panel of 156 clinical isolates recovered from 13 Autonomous Communities, representing the major pig producers, were analysed. MLST and serotyping analysis revealed that most isolates (61.6%) were assigned to ST1 (26.3%), ST123 (18.6%), ST29 (9.6%), and ST3 (7.1%). Interestingly, 34 new STs were identified, indicating the emergence of novel genetic lineages. Serotypes 9 (27.6%) and 1 (21.8%) prevailed, followed by serotypes 7 (12.8%) and 2 (12.2%). Analysis of 13 virulence-associated genes showed significant associations between ST, serotype, virulence patterns, and clinical features, evidencing particular virulence traits associated with genetic clusters. The pangenome was generated, and the core genome was distributed in 7 Bayesian groups where each group included a variable set of over- and under-represented genes of different categories. The study provides comprehensive data and knowledge to improve the design of new vaccines, antimicrobial treatments, and bacterial typing approaches.


Assuntos
Streptococcus suis , Animais , Suínos , Streptococcus suis/genética , Espanha/epidemiologia , Teorema de Bayes , Tipagem de Sequências Multilocus/veterinária , Virulência , Genômica
11.
PLoS Pathog ; 20(1): e1011957, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241393

RESUMO

Streptococcus suis serotype 2 is an important encapsulated bacterial swine pathogen and zoonotic agent for which no effective vaccine exists. The interaction with B cells and the humoral response against S. suis are poorly understood despite their likely relevance for a potential vaccine. We evaluated germinal center (GC) B cell kinetics, as well as the production and role of S. suis-specific antibodies following infections in a mouse model. We found that mice infected with S. suis developed GC that peaked 13-21 days post-infection. GC further increased and persisted upon periodic reinfection that mimics real life conditions in swine farms. Anti-S. suis IgM and several IgG subclasses were produced, but antibodies against the S. suis capsular polysaccharide (CPS) were largely IgM. Interestingly, depletion of total IgG from the wild-type mice sera had no effect on bacterial killing by opsonophagocytosis in vitro. Somatic hypermutation and isotype switching were dispensable for controlling the infection or anti-CPS IgM production. However, T cell-deficient (Tcrb-/-) mice were unable to control bacteremia, produce optimal anti-CPS IgM titers, or elicit antibodies with opsonophagocytic activity. SAP deficiency, which prevents GC formation but not extrafollicular B cell responses, ablated anti S. suis-IgG production but maintained IgM production and eliminated the infection. In contrast, B cell deficient mice were unable to control bacteremia. Collectively, our results indicate that the antibody response plays a large role in immunity against S. suis, with GC-independent but T cell-dependent germline IgM being the major effective antibody specificities. Our results further highlight the importance IgM, and potentially anti-CPS antibodies, in clearing S. suis infections and provide insight for future development of S. suis vaccines.


Assuntos
Bacteriemia , Infecções Estreptocócicas , Streptococcus suis , Vacinas , Animais , Camundongos , Suínos , Streptococcus suis/genética , Anticorpos Antibacterianos , Imunoglobulina G , Imunoglobulina M , Linfócitos T , Infecções Estreptocócicas/microbiologia
12.
mBio ; 15(1): e0225923, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38063379

RESUMO

IMPORTANCE: Phase variation allows a single strain to produce phenotypic diverse subpopulations. Phase-variable restriction modification (RM) systems are systems that allow for such phase variation via epigenetic regulation of gene expression levels. The phase-variable RM system SsuCC20p was found in multiple streptococcal species and was acquired by an emerging zoonotic lineage of Streptococcus suis. We show that the phase variability of SsuCC20p is dependent on a recombinase encoded within the SsuCC20p locus. We characterized the genome methylation profiles of the different phases of SsuCC20p and demonstrated the consequential impact on the transcriptome and virulence in a zebrafish infection model. Acquiring mobile genetic elements containing epigenetic regulatory systems, like phase-variable RM systems, enables bacterial pathogens to produce diverse phenotypic subpopulations that are better adapted to specific (host) environments encountered during infection.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Animais , Streptococcus suis/genética , Streptococcus suis/metabolismo , Epigênese Genética , Enzimas de Restrição-Modificação do DNA/genética , Peixe-Zebra/microbiologia , Virulência , Larva/microbiologia , Epigenoma , Transcriptoma , Infecções Estreptocócicas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
13.
Ultrason Sonochem ; 102: 106733, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150957

RESUMO

Emodin was extracted from Rheum officinale Baill by ultrasound-assisted extraction (UAE), and ethanol was chosen as the suitable solvent through SEM and molecular dynamic simulation. Under the optimum conditions (power 541 W, time 23 min, liquid to material ratio 13:1 mL/g, ethanol concentration 83 %) predicted by RSM, the yield of emodin was 2.18 ± 0.11 mg/g. Moreover, ultrasound power and time displayed the significant effects on the extraction process. Extracting dynamics analysis indicated that the extraction process of emodin by UAE conformed to Fick's second diffusion law. The results of antibacterial experiments suggested that emodin can damage cell membrane and inhibit the expression of cps2A, sao, mrp, epf, neu and the hemolytic activity of S. suis. Biolayer interferometry and FT-IR multi-peak fitting assays demonstrated that emodin induced a secondary conformational shift in CcpA. Molecular docking and molecular dynamics confirmed that emodin bound to CcpA through hydrogen bonding (ALA248, GLU249, GLY129 and ASN196) and π-π T-shaped interaction (TYR225 and TYR130), and the mutation of amino acid residues affected the affinity of CcpA to emodin. Therefore, emodin inhibited the sugar utilization of S. suis through binding to CcpA, and CcpA may be a potential target to inhibit the growth of S. suis.


Assuntos
Emodina , Rheum , Streptococcus suis , Emodina/farmacologia , Emodina/química , Rheum/química , Streptococcus suis/genética , Streptococcus suis/metabolismo , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Etanol/metabolismo
14.
J Antimicrob Chemother ; 79(2): 403-411, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153239

RESUMO

BACKGROUND: Streptococcus suis is an important pig pathogen and an emerging zoonotic agent. In a previous study, we described a high proportion of penicillin-resistant serotype 9 S. suis (SS9) isolates on pig farms in Italy. OBJECTIVES: We hypothesized that resistance to penicillin emerged in some SS9 lineages characterized by substitutions at the PBPs, contributing to the successful spread of these lineages in the last 20 years. METHODS: Sixty-six SS9 isolates from cases of streptococcosis in pigs were investigated for susceptibility to penicillin, ceftiofur and ampicillin. The isolates were characterized for ST, virulence profile, and antimicrobial resistance genes through WGS. Multiple linear regression models were employed to investigate the associations between STs, year of isolation, substitutions at the PBPs and an increase in MIC values to ß-lactams. RESULTS: MIC values to penicillin increased by 4% each year in the study period. Higher MIC values for penicillin were also positively associated with ST123, ST1540 and ST1953 compared with ST16. The PBP sequences presented a mosaic organization of blocks. Within the same ST, substitutions at the PBPs were generally more frequent in recent isolates. Resistance to penicillin was driven by substitutions at PBP2b, including K479T, D512E and K513E, and PBP2x, including T551S, while reduced susceptibility to ceftiofur and ampicillin were largely dependent on substitutions at PBP2x. CONCLUSIONS: Here, we identify the STs and substitutions at the PBPs responsible for increased resistance of SS9 to penicillin on Italian pig farms. Our data highlight the need for monitoring the evolution of S. suis in the coming years.


Assuntos
Aminoaciltransferases , Cefalosporinas , Streptococcus suis , Animais , Suínos , Penicilinas/farmacologia , Proteínas de Ligação às Penicilinas/genética , Streptococcus suis/genética , Proteínas de Bactérias/genética , Streptococcus pneumoniae/genética , Sorogrupo , Aminoaciltransferases/genética , Testes de Sensibilidade Microbiana , Resistência às Penicilinas/genética , Genômica , Ampicilina , Células Clonais , Antibacterianos/farmacologia
15.
Proc Natl Acad Sci U S A ; 120(47): e2307773120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963246

RESUMO

The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Humanos , Suínos , Infecções Estreptocócicas/veterinária , Fazendas , Doenças dos Suínos/epidemiologia , Virulência/genética , Streptococcus suis/genética , Gado
16.
Front Cell Infect Microbiol ; 13: 1285055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035330

RESUMO

Streptococcus suis (S. suis) is widely acknowledged as a significant zoonotic pathogen in Southeast Asia and China, which has led to a substantial number of fatalities in both swine and humans. Despite the prevalent use of mice as the primary animal model to study S. suis pathogenesis, the substantial differences in the major histocompatibility complex (MHC) between humans and mice underscore the ongoing exploration for a more suitable and effective animal model. In this study, humanized transgenic HLA-A11/DR1 genotypes mice were used to evaluate the differences between humanized HLA and murine H2 in S. suis infection. Following intravenous administration of S. suis suspensions, we investigated bacterial load, cytokine profiles, pathological alterations, and immune cell recruitment in both Wild-type (WT) and humanized mice across different post-infection time points. Relative to WT mice, humanized mice exhibited heightened pro-inflammatory cytokines, exacerbated tissue damage, increased granulocyte recruitment with impaired resolution, notably more pronounced during the late infection stage. Additionally, our examination of bacterial clearance rates suggests that HLA-A11/DR1 primarily influences cell recruitment and mitochondrial reactive oxygen species (ROS) production, which affects the bacterial killing capacity of macrophages in the late stage of infection. The reduced IL-10 production and lower levels of regulatory T cells in humanized mice could underlie their compromised resolution ability. Intervention with IL-10 promotes bacterial clearance and inflammatory regression in the late stages of infection in transgenic mice. Our findings underscore the heightened sensitivity of HLA-A11/DR1 mice with impaired resolution to S. suis infection, effectively mirroring the immune response seen in humans during infection. The humanized HLA-A11/DR1 mice could serve as an optimal animal model for investigating the pathogenic and therapeutic mechanisms associated with sepsis and other infectious diseases.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Camundongos , Suínos , Interleucina-10 , Streptococcus suis/genética , Sorogrupo , Antígeno HLA-A11 , Camundongos Transgênicos , Imunidade , Infecções Estreptocócicas/microbiologia
17.
Virulence ; 14(1): 2283896, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010345

RESUMO

Streptococcus suis is a zoonotic Gram-positive bacterium that causes invasive infections such as sepsis and meningitis, threatening public health worldwide. For successful establishment of infection, the bacterium should subvert the innate effectors of immune defence, including the cathelicidin family of host-defence peptides that combat pathogenic bacteria by directly disrupting cell membranes and coordinating immune responses. Here, our study shows that an extracellular endopeptidase O (PepO) of S. suis contributes to assisting the bacterium to resist cathelicidin-mediated killing, as the deletion of the pepO gene makes S. suis more sensitive to the human cathelicidin LL-37, as well as its mouse equivalent, mCRAMP. This protease targets and cleaves both LL-37 and mCRAMP, degrading them into shorter peptides with only a few amino acids, thereby abrogating their ability to kill S. suis. By cleaving LL-37 and mCRAMP, PepO impairs their chemotactic properties for neutrophil migration and undermines their anti-apoptosis activity, which is required for prolonging neutrophil lifespan. Also, PepO inhibits the ability of LL-37 and mCRAMP to promote lysosome development in macrophages. Moreover, the loss of PepO attenuates organ injury and decreases bacterial burdens in a murine model of S. suis bacteraemia. Taken together, these data provide novel insights into the role of the intrinsic proteolytic characteristics of PepO in S. suis-host interaction. Our findings demonstrate that S. suis utilizes the PepO protease to cleave cathelicidins, which is an immunosuppressive strategy adopted by this bacterium to facilitate pathogenesis.


Assuntos
Catelicidinas , Streptococcus suis , Animais , Humanos , Camundongos , Catelicidinas/metabolismo , Catelicidinas/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Evasão da Resposta Imune , Streptococcus suis/genética , Streptococcus suis/metabolismo , Metaloendopeptidases , Bactérias/metabolismo
18.
Appl Environ Microbiol ; 89(11): e0128423, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37861326

RESUMO

IMPORTANCE: To the best of our knowledge, this study reveals a strong correlation between mass spectra pattern and virulence phenotype among S. suis for the first time. In order to make the findings applicable and to excavate the intrinsic information in the spectra, the classifiers based on the machine learning algorithms were established, and RF (Random Forest)-based models have achieved an accuracy of over 90%. Overall, this study will pave the way for virulent SS2 (Streptococcus suis serotype 2) rapid detection, and the important findings on the association between genotype and mass spectrum may provide a new idea for the genotype-dependent detection of specific pathogens.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Virulência/genética , Streptococcus suis/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sorogrupo , Aprendizado de Máquina
19.
Medicine (Baltimore) ; 102(43): e35780, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37904422

RESUMO

RATIONALE: Streptococcus suis (S suis)-associated infections are uncommon but life-threatening diseases. The clinical manifestations vary from general symptoms of bacterial infection to fatal meningitis. The clinical manifestation and routine diagnostic testing is not specific enough to obtain well-time diagnosis. PATIENT CONCERNS AND DIAGNOSIS: We report a case of meningitis and sepsis caused by S suis infection. A 70-year-old woman presented to our emergency department with generalized pain. After hospital admission, her condition rapidly deteriorated to fever, intracranial hypertension, and disturbance of consciousness. Examination of the blood and cerebrospinal fluid with metagenomic next-generation sequencing and bacterial cultures revealed S suis infection. INTERVENTIONS AND OUTCOMES: After anti-infection therapy with meropenem and vancomycin, the patient recovered and was discharged from the hospital with no residual effects. LESSONS: Human infections with S suis are extremely rare. If clinicians encounter a patient with fever, disturbance of consciousness, and intracranial hypertension, especially those who have been exposed to raw pork, S suis infection should be considered. Metagenomic next-generation sequencing can be a useful adjunct for the rapid diagnosis of S suis infection and aid in the planning of clinical treatment. Meanwhile, public health awareness is necessary to limit the risk of S suis infection.


Assuntos
Hipertensão Intracraniana , Meningites Bacterianas , Sepse , Infecções Estreptocócicas , Streptococcus suis , Humanos , Feminino , Idoso , Streptococcus suis/genética , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Sepse/diagnóstico , Sepse/tratamento farmacológico , Sepse/complicações , Meningites Bacterianas/diagnóstico , Meningites Bacterianas/tratamento farmacológico , Hipertensão Intracraniana/complicações
20.
J Microbiol Methods ; 214: 106828, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783232

RESUMO

A mismatch amplification mutation assay (MAMA)-PCR, which detects a single-nucleotide polymorphism contributed to serological difference between Streptococcus suis serotypes 2 and 1/2, is used to discriminate between these serotypes. The present study reports unusual serotype 1/2 isolates untypable by the MAMA-PCR and improvement of the MAMA-PCR for typing such isolates.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Humanos , Animais , Suínos , Sorogrupo , Sorotipagem , Streptococcus suis/genética , Infecções Estreptocócicas/diagnóstico , Reação em Cadeia da Polimerase , Mutação , Doenças dos Suínos/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...